Harvest and Beyond
Harvesters, Drying Oasts, and Pelletizing

December 6, 2014
Morrisville, NY
Chris Callahan
UVM Extension Ag Engineering

UVM Extension helps individuals and communities put research-based knowledge to work.
Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. University of Vermont Extension, Burlington, Vermont. University of Vermont Extension, and U.S. Department of Agriculture, cooperating, offer education and employment to everyone without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or familial status.
Mechanized Harvesting

- **Economics**
 - Capital cost
 - Labor savings

- **Quality**
 - Harvest timing and duration

- **Logistics**
 - “Feeding the machine”
 - Will need more drying capacity

- **Net Yield**

Strip and Sort
Harvester Characteristics

- Cost
 - material, labor, assembly, retrofit, recurring
- Capacity (bines/hr)
- Crew
- Power source
- Portable vs. Stationary
- Effectiveness
Harvest Timing / Readiness

- Should be based on dry mater.
- 20-23% DM, depending on variety
- DM determined by weighing/drying

Calculator (Web and Excel):
https://www.uvm.edu/extension/agriculture/engineering/?Page=hopscalc.html

Instructional videos and wiki:
http://www.uvm.edu/extension/cropsoil/hops
UVM Mobile Hop Harvester

Aroostook Hops – Westfield, ME - 2013
UVM Mobile Hop Harvester

- Open source design
- $9,500 - 30,000
- 60 - 170 bines per hour
- 2 – 4 person crew
- Hydraulic power (tractor PTO)
- Strips and sorts
- Auto feed

Chris Callahan
UVM Extension
chris.callahan@uvm.edu
802-773-3349

Google “UVM Hops Wiki”
Wolf WHE170
Four Star Farms
(Northfield, MA)
Wolf Harvesters

- $30,000 – $45,000
- WHE140: 120-140 bines/hr
- WHE170: up to 170 bines/hr
- 1-8 person crews
- 3 Phase electrical power
- Strips and sorts (and can chop bines)
- Auto feed

Tom Frazer
Dauenhauer Mfg, Co.
707-546-0577
tfrazer@dmfg.com
www.dmfg.com
Wolverine

Patrick Comerford
607-661-7473
puckster5@juno.com
HopsHarvester.com

John Bonzo
Mendon Precision, LLC.
Honeoye Falls NY 14472 us
hopsharvester@gmail.com
<table>
<thead>
<tr>
<th>Option</th>
<th>Initial Cost</th>
<th>Crew</th>
<th>Bine/Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Picking</td>
<td>Zero</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crafty Hop Plucker</td>
<td>$5,000</td>
<td>1</td>
<td>30-60</td>
</tr>
<tr>
<td>Bine 3060 (Addison Hop Farm, Addison, VT)</td>
<td>$14,250</td>
<td>1-3</td>
<td>20-40</td>
</tr>
<tr>
<td>Steenland Hop Harvester 1000</td>
<td>$11,800</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>LaGasse Mobile Harvester</td>
<td>TBD (custom harvest)</td>
<td>2</td>
<td>150-200 (est.)</td>
</tr>
<tr>
<td>UVM Mobile – Open-Source</td>
<td>$9,500-$30,000</td>
<td>4</td>
<td>60-120</td>
</tr>
<tr>
<td>(UVM and others replicating Dean Heltemes, Todd Wycoff, Pat Comerford)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolverine</td>
<td>$29,990</td>
<td>2-3</td>
<td>120</td>
</tr>
<tr>
<td>HopsHarvester.com</td>
<td>$22,500</td>
<td>2-3</td>
<td>120</td>
</tr>
<tr>
<td>Wolf WHE140-170</td>
<td>$43,500</td>
<td>1+</td>
<td>140-170</td>
</tr>
</tbody>
</table>
Harvester Cost / Benefit

- Assume $35,000 cost of harvester
- 120 bine/hour harvesting rate with machine
 - compared to 1.5 bine/hour manually
 - $7.25/hr wage assumed
- 6 acres harvest per year
- 1500 bines per acre
- 1 lb dry cones per bine
- Retail pricing of $10 per lb (dry)

Machine simple payback period 0.43 years
Drying

• Removing water
 – 77-80% moisture at harvest
 – 8-10% for stable storage
 – For every dry pound of hops, need to “boil off” 3.5 pounds of water.
 – Race between evaporation and oxidation

22% stuff your customers want (really less) 78% water
Air and Water and Water in Air

• “Psychrometrics”
• Air can carry a fixed amount of water vapor
 – Depends on temperature
 – Relative Humidity is a measure of how much of the maximum water vapor is in the air
Impact of Air Temp

Heat and Air Velocity

Burlington, VT

<table>
<thead>
<tr>
<th>Month</th>
<th>Temp (DB, F)</th>
<th>RH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>Feb</td>
<td>22</td>
<td>66</td>
</tr>
<tr>
<td>Mar</td>
<td>31</td>
<td>63</td>
</tr>
<tr>
<td>Apr</td>
<td>46</td>
<td>57</td>
</tr>
<tr>
<td>May</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Jun</td>
<td>67</td>
<td>69</td>
</tr>
<tr>
<td>Jul</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>Aug</td>
<td>68</td>
<td>72</td>
</tr>
<tr>
<td>Sep</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>Oct</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>Nov</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>Dec</td>
<td>29</td>
<td>67</td>
</tr>
</tbody>
</table>

- **68 F Air, 72% RH, no heat added**
 - **24 CFM for 8 hrs of dry time per 1 dry lb of hops**
 - **24-48 ft² footprint**
- **68 F Air, 72% RH, heated to 118 F (14% RH) – 30 Watts per dry lb**
 - **2 CFM for 8 hrs of dry time per 1 dry lb of hops**
 - **2-4 ft² footprint**

Heat: About 1 BTU/hr (or 0.3 Watts) per CFM-degF heat

Air Velocity: 0.5-1.0 ft/s – influences tray area (ft²)
Simple
Bigger

• Higher volume of fewer varieties
The oast includes two 4'x4'x8' cabinets with independent access doors and controls. Total capacity is 600 lbs wet hops which can be dried in 8 hours.

Different hop varieties can be kept separate in the oast by placing them in different trays. A total of 8 trays can be accommodated in each cabinet. Wire mesh is used as the bottom for the trays which allows air flow through the hops.
Multi-tray Oast

- Good for lower volume of fewer varieties
- Well mixed
- Well controlled drying environment
- Fact sheet online at UVM Wiki

The fan and heater are installed on the ceiling of the cabinet. A PID controller (inset) rests on top of the cabinet and ensures temperature control.
Peak alpha acid at 48 C (118 F), dried in 8 hours

Drying complete at Approx. 8 hrs
10% moisture

Fig. 7. α-acid–temperature–time characteristics, 1975 harvest

From R. Andrews, 2012
Hops Pelletizer
UVM Engineering Undergraduate Capstone Project
Kris Andersen (Addison, VT) and Bill Powell (Calais, VT) Sponsored
Customized Die

Protruding die fingers intended to allow better cooling of die and pellets with air flow around them.

Original Die

Note the greater number of holes in the original die. This allows greater throughput for the same power input.
Setup for air cooled pelletizing. Approx 75 CFM from bathroom exhaust fan.

Setup for passive cooling on a screen. Could add floor fan to enhance this.
Approximate example of how much densification you achieve with pelletization. The two bags of baled whole leaf hops are about the same weight as the bag of pellets.
Alpha Acid Reduction due to Pelletizing Nugget 2013

-1.75%
-1.09%
-0.83%

Beta Acid Reduction due to Pelletizing Nugget 2013

-0.28%
-0.23%
-0.25%

HSI Improvement due to Pelletizing Nugget 2013

+0.046
+0.016
+0.013

Not milled prior to pelletizing

Ambient Temperature 69-75 degF

“Throat Temp” 109-151 degF

“Pile Temp” 106-185 degF

Rate 34-61 dry lb/hr
Chris Callahan
Rutland Office / chris.callahan@uvm.edu / 802-773-3349
www.uvm.edu/extension/agriculture/engineering
blog.uvm.edu/cwcallah